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r_iAbstract -- The determination of sweep shadows is important when analyzing the potential
" interference effects of obstacles in a robotic environment. This paper presents multiple techniques

for generating the rotational sweep shadows of polyhedral objects through the use of a sweep
plane. Various implementation difficulties are discussed with proposed solutions presented.
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Introduction

The order in which an assembly is performed can drastically affect the overall time it takes to
perform that assembly. A good ordering can reduce the number of assembly errors and
manufacturing difficulties. For example, some alternate assembly sequences may require less
fixturing or fewer changes of tools and grippers than others. It may be possible, by assembling
different parts at different times, to develop sequences which have mating trajectories with fewer
and more distant obstacles to avoid. Such a choice could thereby result in simpler and more reliable
assembly operations.

It is the goal of this paper to answer some of the questions posed by the calculation of geometric
feasibility. Geometric feasibility determines whether or not two subassemblies can be properly
mated along a collision free trajectory. Related to this calculation is the determination of the gripper
envelope, or the volume available for the gripper, during an assembly operation. The goal of these
types of calculations is to determine the potential interference effects of obstacles in the
environment.

Background

A significant body of research has been compiled in recent years which addresses the question of
assembly sequence planning. In most cases the basic approach is to use the geometric relationships
between parts and the idea of geometric feasibility to generate a list of all the possible feasible
assembly sequences. Differences between the various approaches involve the method by which
assembly sequences are represented and the degree and type of operator interaction required by the
algorithm.

Two of the earliest attempts, by Ko and Lee [Ko] and Fox and Kempf [Fox], use a precedence
graph to represent the relationship between the various assembly tasks and require the operator to
supply all the geometric feasibility information. Further work by De Fazio and Whitney [De Fazio
87, De Fazio 88] uses directed graphs of assembly states and provides a consistent set of operator
questions for determining geometric feasibility. Later, Homem de Mello and Sanderson [Homem
86, Homem 88] propose the use of AND/OR graphs of subassemblies to represent the assembly
sequences and provide an algorithm for analyzing geometric feasibility.

A common element missing from all these approaches is the ability to rank the various assembly
sequences so as to be able to determine the sequence most likely to be successful. Among the
factors which may be used to rank sequences and specific operations in the sequence are the size
and shape of the gripper envelope and the subassembly stability (in the presence of friction and

gravity).

Figure 1 shows a proposed blueprint for the architecture of an assembly sequence planner. Many
of the modules depicted exist, in one form or another, as research efforts throughout the literature
[Welch]. The notable exception is the module for performing gripper envelope analysis. In this
paper the issues related to determining the bounds on the gripper envelope are addressed.

The Gripper Envelope

Humans and robots are both similar in that each need an envelope or volume in which to perform
actions. In most cases the volume required for an action is centered about the object being acted
upon and changes as the operator moves the object past obstacles in the environment. There are
two techniques which can be used to deal with the problem. The first requires full geometric data
on the robot or agent performing the assembly. An algorithm for detecting collisions, for example,
is one proposed by Mirolo and Pagello [Mirolo]. The second technique performs the motion
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without the presence of the agent and generates the volume not occupied by obstacles for later
analysis. This second technique is the one being considered here because it provides a non-robot-
specific solution.

Initially the calculation of the gripper envelope closely resembles the volume sweeping problem, as
described by Wang and Wang [Wang], in which the obstacles in the environment sweep out
volumes which cannot be occupied by either the part being mated or the mechanism moving the
part. However, by limiting the types of motions that an object may follow, the problem can be
simplified.

Problem Simplifications

As is commonly the case in both robotics and other fields a problem is first partially solved by
making restrictions to the shapes of geometric entities. In the field of robotics this usually involves
restrictions to the types of paths possible in mating trajectories and to the shapes of objects being
represented. Another common assumption in robotics is that the geometric relationship between
that object and the hand/fingers of the agent remains fixed from the time an object is grasped until
the time it is released. This eliminates many types of uncertainty that are difficult to model.

The most common limitation on the shapes of geometric entities is to limit objects to the set of
convex polyhedrons as demonstrated by Mirolo and Pagello [Mirolo]. A less restrictive class of
objects would be those possessing planar faces. This is a common technique in surface modeling
and yields accurate approximations of most objects [see Blinn, Foley, and Turner]. This is the
class of objects used throughout the rest of this paper. -

From basic mechanics, it is known that all forms of motion can be broken up into two distinct
components. The first component is tangential to the direction of motion and the second component
is normal to it. Generalizing the concept to volume sweeping divides the volume being swept into a
cross-sectional area perpendicular to the direction of sweeping and a distance along the direction of
sweeping.

The cross-sectional area of the gripper with respect to the mating trajectory is constant due to the
fixed relationship between the object and the robot agent's hand and the limitation of the mating
trajectories to paths with uniform tangential components, . Examples of trajectory paths which fit
this criterion are straight line segments, simple rotations, helical paths, and constant radius curves.
Thus, by looking at the projected sweep shadow cast by obstacles in the direction of the path
tangent, an estimate of the cross-section available for a robot's hand can be made.

These shadows can be generated by sweeping a plane along the direction of the motion and
marking the cross-sectional area of the obstacles encountered by the plane. For the case of straight
line segments, this is a projection in a cartesian coordinate system and is trivial to compute with the
exception of clipping and closure at the ends of the path segments. The case of simple rotations is
not as obvious and provides the body of the paper below.

The Rotational Sweep Shadow Problem

The goal of the rotational sweep shadow problem is to compute the areas in the radius-height plane
which are swept by a full plane sweeping through an angle in the specified rotational reference
frame given the arbitrary rotational reference frame, the angle to rotate through, and the
environment of obstacles. More specifically, given an arbitrary axis of rotation, center of the
rotation space, a reference point defining the starting location of the sweep plane, and an angle to
rotate the plane through, sweep the plane through the rotation and record all the areas on the plane
that are swept out by obstacles in the environment.
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The rotation of a full plane is necessary since it is unknown which half of the sweep space is
important relative to the reference point. For example, consider a hand drill with a T shaped
handle. While it is sufficient to represent its orientation by specifying the location of one side of
the handle, both sides of the handle may encounter obstacles when it rotates.

Upon further consideration, this problem reduces to the projection of data (through the angular
coordinate) in an arbitrary cylindrical coordinate system with the added consideration of clipping at
the initial and final location of the sweep plane. There are also some other complications brought
about since the plane being swept is a full plane and not the half-plane usually associated with a
cylindrical coordinate system. The two most obvious complications are the inclusion of data points
containing both positive and negative radii (something not allowed in a strict cylindrical coordinate
system) and, when the rotational angle is greater than %, points on an obstacle may appear in both
the positive and negative sides of the sweep plane. These are some of the features which make this
problem interesting.

The Basic Solution

Having defined the rotational sweep shadow problem, it is now possible to explore solutions to the
problem. Since the sweeping operation reduces to projection through the angle of rotation in a
cylindrical coordinate system, it is advantageous to use cylindrical coordinates in the solution of the
problem. Since clipping and closure are also considerations, algorithms to accomplish these
operations are needed. Figure 2 shows a simplified description of the algorithm to be used.

The next few sections describe in detail the various calculations necessary to implement the
algorithm.

Defining the Cylindrical Coordinate System

The initial step in solving the rotational sweep shadow problem is to develop a representational
formalism that simply and compactly defines the relevant data. Figure 3 shows how an arbitrary
point in the environment can be represented in terms of a cylindrical coordinate system defined by
the rotation.

One problem with the formalism of Figure 3 is that it does not specify the angular component of
the point P. To do this, a cartesian coordinate system must be built around the cylindrical system
so that a reference direction for the angular component can be defined. The first obvious choice of
axis is to use the axis of rotation as the new cartesian z-axis. Specifying the new cartesian x- and y-
axes requires more thought. Since a reference point representing the starting location of the rotation
plane has already been specified it would be advantageous to use this to define the new cartesian x-
axis. In general the direction from the center of the rotation to the reference point is not orthogonal
to the already chosen z-axis. The solution to this is to use the Gram-Schmidt orthonormalization
technique to specify the x-axis orthogonal to the existing z-axis [Hoffman, p. 280]. The y-axis
then follows naturally in the right hand sense as the vector cross product between the z-axis and the
X-axis.

Converting Data to the Sweep Reference System

Now that the sweep reference system is defined it is necessary to convert all the environment data
to that coordinate system. Letting T represent a coordinate transformation matrix from the global
coordinate system to the sweep reference system using the x-, y-, and z-axes defined in the
previous section. A matrix notation can be used to convert the coordinate P, as defined in Figure 3,
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to the r, 6, and k of the sweep reference system by first finding the scalar components, [a b ], of
the position vector P in the sweep reference system as shown below [Selby, p. 369].

-1
[P-Prl=labcl[T] > [abcl=[P-Pr][T]

r=va2 + b2
U p)
@=tan (a)

h=c
Clipping Edges Against the Rotational Sweep Wedge

In a rectangular system the clipping of edges against a fixed planar boundary is straightforward and
yields relatively few difficulties [Hearn, pp. 128-134]. Extending the idea of clipping to two
parallel planar faces involves clipping against each of the planar faces individually. It would appear

that the same basic idea can be used to clip an edge against the two constant -planes which bound
the rotational sweep wedge; however, this is not entirely true.

If the calculation of the rotational sweep shadow involved only the rotation of a half-plane then
clipping against the two constant §sides of the wedge would sufficiently clip the end or ends of
each edge. However, a consideration of both positive and negative wedges reveals that edges
swept by the negative radius half of the sweep plane must be clipped to the opposite sides of the
constant 8 wedge boundaries. This requires clipping of each edge against four boundaries to solve
the problem. It is also possible to clip each edge against the two positive radius wedge boundaries
by rotating the edge data through 7 radians and then reclipping against the same two boundaries.
This second technique is the one that is used here and is essentially the same as performing the
clipping operations for two half plane rotational sweeps.

Another approach to the clipping problem involves clipping against both constant §wedge
boundaries simultaneously. This is not as straightforward as the rectangular case because of the
wrap-around nature of angular data. (Angles greater than twice 7 are not possible.) In the
rectangular case, an indication would be given as to whether an edge's endpoints are beyond one
of the two boundaries and which of the two boundaries it is beyond. In the case of cylindrical data,
it is not readily apparent whether the endpoint is beyond the 6 = 0 or 8 = gy Wedge boundary.
This effect can be counteracted by also considering the midpoint of each edge. Figure 4 shows all
the possible arrangements of endpoints and midpoints for the case when the first endpoint as
represented by plhas a @value greater than the second endpoint which is represented by p3
Solution of the problem when the role of the endpoints is reversed follows by symmetry.

If either of these techniques is used, a method is still needed to calculate the intersection point with
the wedge boundary. By parameterizing the edge with endpoints pj and p2 the following vector
formulation is obtained:

[p1+m(p2-p)]=[abc];0<m<]
For the case of finding the intersection point with the 8 = 0 wedge boundary the coordinate b

becomes zero. By introducing the vector d= [0 1 0] and by taking the vector dot product of d with
both sides of the above equation the following condition results [Selby, p. 540]:
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pr-d+ m(pzd-pyd)=0

Solving for m yields:
_prd
m=
prd-p2d

Solving for the intersection point with the 8 = @y Wwedge boundary is straightforward using the
same basic approach and a simple trick. If the coordinates of the edge are rotated about the z-axis

by negative gy radians, then the y-coordinate of the intersection point (b above) becomes zero.

To do this, the vector d needs to be changed to d= [-Sin(8max) c0S(Omax) 0] and the above
calculations repeated [Hearn, pp. 108-109].

Since it is already known that the edge under study intersects the wedge boundary (due to previous
calculations), the above solution holds unless p; and p are identical.

Closing Faces Against the Rotational Sweep Wedge

In the previous section, two different methods are presented which demonstrate how an edge can

be clipped against the constant @ boundaries of the sweep wedge. In the first method, the edges are
clipped against each planar boundary separately. Closure of each face along the clipping plane is
routine provided that the edges bounding the face are processed in an orderly fashion [Hearn, pp.
134-138].

For the second method where clipping against both boundaries is done simultaneously, the results
of clipping and the necessary closure are not as clear cut. Figure 5 shows the four types of closure
possible for the positive radius wedge. In Figure 5a and 5b the method of closure is identical to
that used when clipping a face against a single plane. Figure 5c shows a polygon which is closed
against both faces and Figure 5d depicts a polygon that leaves from one of the wedge boundaries
and enters via the other. In this case, the resultant closure requires the addition of two edges
instead of the more typical one.

Unlike the normal closure case, the clipping algorithm does not supply all the information
necessary to construct the two new edges of Figure 5d. The data missing is the value of the z or

height, A, of the face where the radius is zero. According to calculus, a plane can be defined by a
normal vector to the plane and a point on the plane by the function:

@-po)n=0

where pg is the given point on the plane and » is the normal to the plane. Knowing that the radius
must be zero, and hence both x and y must be zero, reduces the formula to:

[<0 0 h> - <xg yp 20>]-[nx ny nz] =0

and

ny ny
h=xp2=+Y0,-+20
nz nz

the clipping and closure algorithms guarantee that the face crosses the radius-equals-zero point, the
value of nz; must be nonzero.



USRI M

|

If

Rotational Sweep Shadows, Welch & Kelley

Discovered Inadequacies of the Current Solution

At first glance it would appear that all the necessary elements are now in place to generate the
complete rotational sweep shadow for a group of objects and an arbitrary rotational reference.
Unfortunately, this is not the case. There are two main problems which need to be addressed. The
first is caused by values of the rotation angle greater than n radians. The reason that this is a
problem is that when the sweep plane is rotated greater than = radians it becomes possible for the
same points on an object to intersect both the positive and negative radius sides of the sweep plane.

The second problem is illustrated in Figure 6. Consider the planar face represented by the plane x =
4 as shown in Figure 6a. If the face is bounded at height of z = #2 and the algorithms presented
above are used to sweep from &) to 87 the resulting plot in the rh-plane will result as shown in
Figure 6b. The reason that the left side of the figure is left open is due to the manner in which the
wireframe is swept. As the z = 2 edge is swept, the & value of the edge is constant and the r value
starts at some value greater than 4 (= v (yo*yp + 4*4), decreases to 4 at y = 0 and then increases
again as @reaches §;. When one of the edges at the constant 8boundaries is determined (via
clipping and closure) a constant radius edge is generated in the rh-plane. Similar results occur at the
z = -2 and &) boundaries respectively. For the case when y( and y; are the same angular distance
from the x-axis, the open ended wireframe of Figure 6b will be generated. This is called the
minimal radius edge problem and is solved below.

Dealing with Rotational Angles Greater Than ©

There are two ways of dealing with rotational angles greater than x. If the first clipping algorithm
is used (clipping versus the boundaries separately) then some modifications need to made in the
way that edges are clipped by the planes representing the wedge boundaries. Two potential types
of modifications would work in this case. The first would be to institute a clip against a half-plane
using the origin as the boundary of the half-plane and then clipping against the two half-planes
which represent the wedge boundaries. The second technique would involve clipping against the
two full-planes representing the extended wedge boundaries and performing a union of the
resulting edges. Neither of these options is very desirable, in the first clipping against a half-plane
is not well defined and in the second the union operation can be computationally expensive.

When simultaneous clipping against both the wedge boundaries is used, the options for solving
this problem are not straightforward. The added difficulty here is that it is now possible for an edge
to have both end-points in the unclipped zone and yet still have a portion of itself in the clipped
zone. When this is the case, two possible configurations are possible. The first is that the edge
should be closed via the radius-equals-zero point; a problem that is already solved. The second
configuration describes the situation when the clipped wedge cuts the object into two sections thus
causing the face under study to become two faces. In this case, each face with this configuration
would have to be clipped and closed twice, once for each side.

If it is only important to know the boundaries of the sweep shadow and extra lines internal to the
shadow itself are not important or are being removed in a later step, then the following technique
can be used for both independent and simultaneous clipping operations. Since it is demonstrated in
previous sections how to clip and close when the rotation angle is less than or equal to 7, this
problem can be divided into sweeps with angles less than or equal to . The most obvious choice
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of divisions is for one sweep with an angle of 7 and the other with a sweep of 8pgx minus 7. This
requires two extra passes of each face (for a total of four) through the clipping and closure
routines, but it will determine the full boundary of the sweep shadow. One important consideration
is to keep track of whether the clipped edges have a positive or negative radius since the second
sweep wedge begins at angle 7 and not at angle zero.

Solving the Minimal Radius Edge Problem

The problem illustrated in Figure 6 is not as simple to solve as that of rotation angles greater than
. The problem stems from the fact that the wireframe of an object's faces does not necessarily
define the radial boundaries of those faces. By inspection it can be seen that the maximum radius of
any point on a plane is infinite, therefore, the wireframe boundary of a face on that plane will
define the maximum radii of the points on that face. The wireframe, though, does not always
specify the minimal radii points on that face and this is the situation depicted in Figure 6. Thus, it is
necessary to locate and sweep the minimal radius boundary for each face.

A planar surface represented in cylindrical coordinates is not simply defined. A brief look at the
mathematics, though, reveals that the problem is not difficult to solve. Start with the basic equation
for a plane.

Ax+By+Cz=D
By fixing the value of z and solving for the line on the plane defined by this fixed z yields:

A D-Cz
y=-§x+ B

Use this to compute the radius squared, and take the partial derivative of this square with respect to
x and set it equal to zero. This describes the point on that line where the radius is minimized.

r2=x2~l~y:3=x24-(%7(+D1'5,Cz)2
or2 A2 A
9?-=2x(1 +EZ-)-ZE2'(D-CZ)=0

A
X=r7 .55 P

By allowing z to vary, a line representing the minimum radius edge of the plane is defined. This
line can then be treated like any other edge on the face.

There are a few special cases for the proceeding calculations. For the case when C = 0, the values
for x and y are constant throughout the plane. When both A = B = 0 this is the case where z=D
and the plane has a minimal radius of zero which is captured by the closure algorithm and can be
ignored. For the final special case when B = 0, the normal of the plane of the face has no y
component and the value of zero for y can be used.

Now that the minimum radius line for the plane representing the face is defined some further
processing needs to be performed. First, it must be determined whether the line even intersects the
area of the face. This is just the Polygon Intersected Edges problem as defined by Preparata and
Shamos [Prep, p. 313]. If the line does intersect the polygon defining the face then extra edges
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must be added where appropriate. (This is one edge for a convex polygon and possibly more for a
non-convex polygon.)

A solution to this problem is to extend the single-shot polygon inclusion test so that all the desired
edges are obtained [Prep, pp. 41-43]. The basic idea of the single-shot polygon inclusion test is to
determine whether a point is located inside a polygon by drawing a ray from that point to infinity
and counting the number of intersections with the edges of the polygon. An odd number of
intersections means the point is inside and an even number means the point is outside. The
minimum radius line is used to define the direction of this ray. Rays are drawn in both directions
away from the point and by sorting all the intersection points, a set of minimal radius edges can be
determined by alternately labeling each intersection point with the rays as inside or outside the
polygon defining the face.

There are a few non-trivial problems associated with this approach which are only briefly
mentioned by Preparata and Shamos. These involve degenerate intersections between the line and
the edges of the polygon. The first arises when the line intersects the polygon at a vertex. Not only
does this intersection point intersect two edges, it is also quite possible that the line is only grazing
the polygon and does not enter or leave it at that point. Whether this type of intersection represents
a true intersection with the polygon can be determined by looking at the sign of the sine of the
angle between the line and the edges of the polygon when both of the edges are directed in the
same direction about the polygon. This information is readily determined by using the vector cross
product.

The second problem arises when the line and an edge overlap each other. This, though, is just an
extension of the vertex intersection problem. By looking at the edges on both ends of the
overlapping edge it can be determined whether this type of intersection defines a crossing point or
not.

The Complete Solution

In Figure 2, a simplified algorithm is provided which attempts to solve the rotational sweep
shadow problem. In previous sections, this algorithm is shown to be mostly correct, but lacks
certain features which leave the problem incompletely solved. Figure 7 depicts an enhanced version
of the algorithm in Figure 2 with added steps for solving the problems associated with large sweep
angles and minimal radius edges.

Even though the solution to this problem requires up to four passes through the clipping and
closure routines for each wedge, the time complexity is still linear with respect to the number of
edges in the obstacles. The only portion of the solution which is not linear is the sorting of
intersection points found in the minimal radius edge solution. In the worst case this sorting can be
done in nlogn time, but it is more likely that only zero, two, or four points need be sorted for a face
with most faces possessing zero or two intersections for reasonable objects.

Results

A rotational sweep shadow generator using the techniques of simultaneous clipping as described
above has been implemented in C on a Sun-3 workstation. It is incorporated within a robotic
assembly planning system and is used to analyze mating trajectories, grasp sites, and grasp types
for the case of simple rotations. Figure 8 shows the results of this algorithm as it encounters a
cube. In both the cases, the extra internal lines of the shadow are left to aid in visualization and
because their presence does not affect the operation and results of the larger system.

Figure 8a shows the cube when the center of the rotation lies within the cube. The rotation angle is
2 radians and the apparent extra set of lines internal to the right and left sides of the figure result



'

Rotational Sweep Shadows, Welch & Kelley

from the minimal radius edge calculations. Figure 8b shows then same cube when the center of the
rotation lies outside of the cube. The triangular patch to the right shows the extra face caused by
clipping and closure at one of the wedge boundaries. The two vertical lines which are tangent to
two of the curved edges are each minimal radius edges. In the case of the right-most one, its
presence in necessary.

Conclusion

It has been shown that the rotational sweep shadow problem yields theoretical as well as practical
results. Two approaches to clipping at the wedge boundaries are presented. The approach using
simultaneous clipping is implemented since it shows a slight computational superiority. This is
due to the fewer number of extra clips and closures performed because all the clipping is performed
in one pass through the edge data rather than two. This makes for a reasonable trade-off against
the higher computational intensity of computing the midpoint and the double edged closure through
r=0.

The test results of the previous section demonstrate that the effects of the minimal radius edge are
important if the entire sweep shadow is to be determined. The results generated from the algorithm
are also useful in solving robotics problems associated with assembly sequence analysis, trajectory
planning and analysis, and the analysis of grasping options. The further advantage offered by the
use of constant cross-sectional area motions is the reduction of the analysis of gripper envelopes to
two-dimensional areas as opposed to three-dimensional volumes.

Future Research

There are a number of ways in which this research can be enhanced. The addition of more complex
surface types such as cylinders and spheres can be considered. It would also be possible to use the
insights gained in solving the rotational sweep shadow in solving the other classes of constant
cross-sectional area motions (e.g., helical paths and constant radius curves). Further applications
to this type of algorithm might also be found in areas other than robotics.
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Captions of Figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Figure 5.

Figure 6.
Figure 7.
Figure 8.

Basic structure chart for an assembly sequence planner.
A simplified algorithm for solving the rotational sweep shadow problem.
An arbitrary cylindrical coordinate system defined by a spatial rotation.

The possible clipping arrangements for a straight line edge intersecting a cylindrical
wedge.

The results of clipping and closing a polygonal face against a cylindrical wedge. The
heaviest lines represent the final shape of the face.

An illustration of the minimal radius edge problem.
A complete algorithm for solving the rotational sweep shadow problem.

The rotational sweep shadow of a cube. (a) With the center of rotation inside the cube.
(b) With the center of rotation outside of the cube.
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procedure GENERATE_ROTATIONAL_SWEEP_SHADOW;
specify and define the cylindrical coordinate system for the sweep;
for each object in the environment;
for each face on the object;
for each edge on the face;

convert the edge to the sweep coordinate system;
sweep the edge and clip as necessary;
close with the previous edge if necessary;

close the face between the initial and final vertices;
end-procedure;

Figure 2. A simplified algorithm for solving the rotational sweep shadow problem.

0
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P .
h=(P-P,)+n
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v ; r=V(P - Pyl *h) 2
P r

Figure 3. An arbitrary cylindrical coordinate system defined by a spatial rotation.
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Rotational Sweep Shadows, Welch & Kelley

emax emax
pl pl pl
p2 p2 p2
p3 p3 p3
0 0
(a) Use entire edge (b) Clip p1 end to Omax
emax
pl
P 2
P
2
pz lp3 p3IP Lp3
p3 ” 3
(c)Clipp3endto6 =0 (d) if 61 >62 and 82 > 03 ignore

otherwise clip pl end to 6max
clipp3endto8 =0

Figure 4. The possible clipping arrangements for a straight line edge intersecting a cylindrical
wedge.
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max
0
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caBypal
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Figure 5. The results of clipping and closing a polygonal face against a cylindrical wedge. The
heaviest lines represent the final shape of the face.

16



S i (N

Rotational Sweep Shadows, Welch & Kelley

x=4

(a) Aplanarface atx =4 (b) The results of clipping and closing
the wireframe of part (a).

Figure 6. An illustration of the minimal radius edge problem.
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Rotational Sweep Shadows, Welch & Kelley

procedure GENERATE_COMPLETE_ROTATIONAL_SWEEP_SHADOW;
specify and define the cylindrical coordinate system for the sweep;
for each object in the environment;
for each face in the environment;
find the height of the face at r=0;
find the minimal radius edges;
for each minimal radius edge;
if Omax > « then;
Sweep in two parts;
else;
sweep in one part;
end-if;
for each edge on the face;
convert the edge to the sweep coordinate system;
if Omax > & then;
for each edge on the face;
sweep for § < 7 and clip as necessary;
close with the previous edge if necessary;
close the face between the initial and final vertices;
reduce Omax by T;
rotate all the data & radians;
end-if;
for each edge on the face;
sweep the edge and clip as necessary;
close with the previous edge if necessary;
close the face between the initial and final vertices;

end-procedure;

Figure 7. A complete algorithm for solving the rotational sweep shadow problem.
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Figure 8. The rotational sweep shadow of a cube. (a) With the center of rotation inside the cube.
(b) With the center of rotation outside of the cube.
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